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Purpose of Talk 

• Introduce a stochastic model to estimate 
gas hydrates with example from the US 
Federal Offshore 

 

• Discuss related statistical issues, 
including model evaluation 
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Specifically 

• “Assessing the Reliability of Complex Models: 
Mathematical and Statistical Foundations of 
Verification, Validation, and Uncertainty 
Quantification”, NAP, 2012 

– Verification – Computational accuracy 

– Validation – Represents state of nature (truth) 

– Uncertainty Quantification 

 

• Focus on specific “Questions of Interest” (QOIs) 
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A Bit about Hydrates: Methane in Ice 
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Courtesy USGS 

 

Crystalline solid 
consisting of gas 
molecules, 
usually methane, 
each surrounded 
by a cage of 
water molecules 
  
Tim Collett, USGS 



Gas Hydrate Locations 
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USGS 



A Bit of History 

• 56 million years ago warming 

• Hypothesis: Initial warming – volcanoes or 
Earth orbit fluctuations released methane 

• Sudden, massive  (to > 1,500 ppm) release of 
CO2 into the atmosphere 

• Planet warmed average of 5 deg C 

• 150,000 years for oceans and forests to 
absorb excess 
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National Geographic, Oct. 2011, Robert Kunzig 



Importance 

• Potential supplement to natural gas 

– US natural gas consumption ~ 25 tcf/year 

– USGS 1995 assessment of in-place gas hydrate ~ 
300,000 tcf; if 10% recoverable -> 1,000 years 

• Natural gas 90% methane 

• Natural gas heats 51% US homes 

• 95% travels via pipe lines 
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US Bureau of Ocean & Energy 
Management Assessment 
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Model 

• Hierarchical model 

• Cell based model (Cell area 2.3 km2 to 5 km2) 

• Estimates in-place gas hydrates 

• Biogenic process (thermogenic omitted) 

• Stochastic as opposed to scenario 

• US Federal offshore 

• Below 300 meters water depth 
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Hydrate Volume By Cell, Gulf of 
Mexico 
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Gulf of Mexico (2008 results) 
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BOEM 2008, Gulf of Mexico 
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14 
Tim Collett, USGS 



The Gas Hydrate Assessment Model 
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Potential Volume 

• Container  Size: 
Hydrate Stability 
Zone (HSZ) 
– Water depth 

– Water bottom temp 

– Geothermal gradient 

– Undersaturated zone 

• Saturation (How 
much room in 
container) 
– Sand & shale 

– Fraction sand 

– Sand & shale porosity – 
fn of HSZ thickness 

– Sand and shale 
concentration 
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Generation 

• Source – Total Organic Carbon 

• Depth 

• Temperature  

• Age 

• Permeability 

• Porosity 

• Sediment density 
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Container 

• Estimate Hydrate Stability Zone (HSZ) 

• HSZ is a zero of: 

 

 

• where 

– GTG is geothermal gradient (degrees/km) 

– WBT is water bottom temperature; a function of 
water depth (WD) 
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( | ) [ ] [ ln( ) ]
1000

HSZ
f HSZ WD GTG WBT HSZ WD          

Modified from Milkov and Sassen (2001) 



Input Data 

• By cell – location, depth, etc 

 

• Model  parameters – Excel spreadsheet 

 

• Hard wired  
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By Cell Data 
(131,745 cells, 2.32 km2 each) 
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XID LATITUDE LONGITUDE SANDP WD SALTISO ANOM BASIN_ID CURVATURE VERTICAL BSR

cgom 27.60017 -88.17414 20 2471 3748 0 414 -27626038 1 0

cgom 27.50204 -88.11684 17 2476 4608 0 414 -1829776 1 0

cgom 27.48779 -88.10208 9 2479 4584 0 414 4977378 1 0

cgom 27.61441 -88.18892 20 2481 3445 0 414 17227454 1 0

cgom 27.61388 -88.17353 20 2493 3497 0 414 16362435 1 0

cgom 27.6582 -88.26411 13 2456 2250 1 420 168130768 0 2

cgom 27.64396 -88.2493 11 2462 2668 0 420 125241448 0 0

cgom 27.67296 -88.29432 18 2465 3356 0 420 61948868 0 0

cgom 27.67244 -88.27891 15 2470 2729 0 420 173680864 0 0

cgom 27.65767 -88.24871 15 2480 2056 1 420 164295200 0 2



Parameters – Excel Spreadsheet 
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Parameter Type Value1 Value2 Value3 Value4 Description 

GeoThermal 
Gradient Normal 25.546 4.634 0 50 Geothermal Gradient (mean,std,min,max) 

BottomTempC
oeffs1 Constant 21.19 -0.0251     WBT=wbtcoeff1*exp(wbtcoeff2*WD1)+wbtcoeff3+Error 

BottomTempC
oeffs2 Constant 1194 -0.78       

BottomTempC
oeffs3 Constant 4.1         

BottomTempC
utPts Constant 400 1450       

BottomTempE
rror Normal 0 0.62 0.0556 0.184 Error term in above (Note: only standard deviation is used) 

50 sub models 



Sources of Data 

• Hard data, i.e., water depth 

• Published literature 

• Analogs 

• Expert judgment 
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Data is expensive! 



Size of Model (Code) 

• FORTRAN code – 3,000 lines of code 

• Visual Basic – a few hundred lines 

• R code – a few hundred lines 
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Statistical Issues 

• Building a complex model 

–How much complexity? 

 

• Code/source verification 

• Model validation 

• Uncertainty quantification 
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Model Complexity 

• Simple (see next slide) 

• Moderately complex (Mass balance gas 
hydrate example) 

• Excessively complex 

– Long run time 

– Understanding decreases 

– Knowledge base insufficient to make reasonable 
estimates of parameters 
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All models are wrong, some are 
useful – George Box 
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USGS 1995 Gas Hydrate Assessment 
Model 
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Validation Hierarchy 
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Data and basic models; TOC, GTG, Water Bottom Temp 

Generation, Container, 
Saturation 

Final 
Volume 



Validation 

• Clear question of interest – Estimate in-place 
volume of gas hydrates 

• Accuracy – Tough one! 

– Not manufacturing 

– Know results at some selected spots 

• Applicability – Defined geographic area 
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Validation 

• Model estimates versus observable 

– At the top level (hydrates in GOM) this is 
impossible, so  

• Pass a laugh test 

• Compare with other estimates (see means 
below) 
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USGS,   1995 GOM                38,251 tcf 
BOEM,  2008 GOM                21,444 tcf 



Laugh Test - Example 

• Shale gas (technically recoverable in Poland) 

 

– Energy Information Adminstration reports a study 
estimating 187 trillion cubic feet (TCF) at the mean 

 

– US Geological Survey (USGS) reports a 05/95 
range of 0 to 4 TCF!  
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Validation – Bottom Up 

• Lowest level variables/models (data or model 
constructed directly from data): 

– Water bottom (seafloor) temperature 

– Geothermal gradient (rate of increasing temperature 
with respect to increasing depth in the Earth's interior) 

– Sediment thickness 

– Total organic carbon 

– Percent sand 
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Water Bottom Temperature (WBT) 
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WBT Locations (GOM) 
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Water Bottom Temperature (WBT) 
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n = 737 



Geothermal Gradient 
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Undersaturated Zone Thickness 
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Potential Volume 
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Uncertainty Quantification on 
Potential Volume 

 

• Range 0 m3 to 800,000 m3 

• Consists of 12 sub models 
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More Concerns 

• Bias 

– Representative data! 

• Uncertainty 

– Input data 

– Model components 

– Propagation of error 

– Consistence with knowledge 

• Dependency 
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More Concerns 

• Dependency/correlation 
– Input – model components – aggregation 

 

• Spatial correlation 
– Data/coverage 

 

• Use of analogs 

 

• Expert judgment 
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Still More Concerns 

• Hard data 
– Occasionally data rich – satellite 

– Usually data poor – drilling expensive 

– Historical data sometimes unknown quality 

– Often spatially clustered 

• “Soft” data – expert opinion 
– Eliciting information 

– Analogs 

– Integrating hard and soft data 
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Finally the Conclusions 

• Mass balance reasonable approach 

• “Easily” upgradable 

• Incorporates geology and biology 

• Probabilistic 

• Preliminary results seem reasonable 

• Output serve as input to technically recoverable 
estimate 

• Transparent 

• Reasonable run time 
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Thank you 

• Questions – comments – suggestions 

 

• Jack’s contact info: jackswsc@q.com 

• Web site: www.swstatconsult.com 

 

• IAMG: www.iamg.org 
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Dependency Concerns 

• Many past oil, gas and other resource 
assessments have assumed: 

 
– Pairwise independence between assessment units 

(plays, cells, basins, etc.) 

 

– Total (fractile) dependence 

 



Middle Ground on Dependency 

• Develop a statistical model using geologic data to 
estimate correlations between neighboring cells, i.e., 
spatial extent of total organic carbon 

 

• Use expert judgment based upon geology and 
analogy to specify associations 

 

• Assume that cells are totally dependent within basins 
and independent between basins 
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Implications 

• Perception of resource base is different 
depending on level of assumed or inferred 
association 

 

• Risk that a government or company is willing 
to assume differs  
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Consider One Variable - Total Organic Carbon 
(TOC) 

• Suppose a TOC = 3 wt % is selected from a 
random draw, i th trial, i = 1, 1000 

• Assumption 

– Independence – only applies to one cell 

– Basin dependence – applies to all cells in basin 

– Total (fractile) dependence – applies to all cells 
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Dependency Issues 

• Cell size (large, moderate, small) 

– Too small – sparse data 

– Too large – mask variability and dependence; 
impose artificial level of homogeneity 

• Independence between nearby cells! 

– Uncertainty estimates of resource much too small 
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The BIG Question??? 

• How far does dependence extend? 

• Denote the same variable measured a 
distance h from each other as Z(s) and Z(h+s); 
s is a location. 

• Issue: Anisotropy (correlation varies by 
direction) 

• Typical covariance model is shown in the 
following slide 
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Covariance (Semivariogram) Model 
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Correlation 

• Does significant correlation exist 

– For 2 km 

– For 20 km 

– For 200 km 

– For 2,000 km 

• Is the correlation the same in all directions?  
Probably not. 
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Other Considerations 

• Influence of Bottom Surface Reflectors (BSRs) 

• Global spatial trends 

• Geologic discontinuities 

• Use of expert judgment to define associations 
between cells 
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Representative Data 

• A statistician’s wish 

– To be able to design an experiment 

– To collect representative data to address 

 

• In real life time, cost, accessibility intervene 
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Geothermal Gradient (GTG)  
Pacific Well Sites 
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Gulf of Mexico 
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No obvious trend 



Total Organic Carbon Sites 
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Partial Solutions 

• Documentation 

– However … 

• Evaluation 

– Results seem reasonable – not all scientific results 
seem reasonable at first 

– Consistent with measurements where hard data 
exists 

– Make available to public 
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Thank you 

• Questions – comments – suggestions 

 

 

 

 

 

• Jack’s contact info: jackswsc@q.com 

• Web site: www.swstatconsult.com 
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International Association for Mathematical 
Geosciences Student Chapters 

• Student Chapters 

– You can plan events 

– Interact with other students 

– Receive financial help attending conferences 

– Meet practicing scientists 

• Earth, climate, and environmental sciences are 
exciting disciplines, which combined with 
mathematics and statistics, can help solve important 
problems that will benefit us and future generations 
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International Association for 
Mathematical Geosciences 

• Sandia National Labs – Albuquerque, NM 

• Beijing Univ. of Geosciences – Beijing 

• Dept of Earth Sciences, Univ. of Ottawa 

• Dallas Geophysical Society, Dallas, TX 

• TNO (energy company), Netherlands 

• Univ. of Twente, Netherlands 

• Univ. of Freiberg, Germany 

• University of Georgia, Athens, GA 

• India – 5 talks 
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